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Ab initio calculations of relativistic core-level electron-energy-loss spectra and x-ray absorption spectra in
periodic systems are carried out using an impurity Green’s function formalism without the need for a supercell.
The approach is based on a hybrid scheme incorporating a reciprocal space calculation of the multiple-
scattering equations, together with a real-space calculation of the excitation spectrum with a statically screened
core-hole potential. The approach accounts for core-hole effects in deep-core spectroscopies of periodic sys-
tems while circumventing the supercell convergence issues encountered with conventional band-structure
codes. The approach is implemented in an extension of the real-space Green’s function code FEFF. Illustrative
calculations are presented for the K edges of C �diamond� and Cu, and the N K edge of GaN.
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I. INTRODUCTION

Electron-energy-loss spectroscopy �EELS� and x-ray ab-
sorption spectra �XAS� are important core-level spectroscopy
techniques for understanding the structural, chemical, and
electronic information about a particular material. EELS
measures the energy loss of a beam of high-energy �typically
of order 100 keV� electrons, propagated through a sample in
electron microscopes,1 while XAS measures the attenuation
of an x-ray beam. Apart from relativistic effects2 these core-
level spectra are essentially the identical. The spectra encom-
pass both extended fine structure and near-edge structure.
For electron energy loss, these include extended energy loss
fine structure �EXELFS� and energy loss near edge structure
�ELNES�. For x-ray absorption, they include extended x-ray
absorption fine structure �EXAFS� and x-ray absorption near
edge structure �XANES�. As there is no quantitative experi-
mental approach for analyzing near-edge spectra, ab initio
calculations are often used to interpret the experimental data.
One commonly used method is based on the real-space
Green’s function �RSGF� code FEFF.1–6 The real-space for-
malism in FEFF treats the extended energy loss region very
efficiently and permits calculations of the spectra in complex
systems over hundreds of electron volt in terms of a finite
multiple-scattering expansion. In contrast, calculations of the
near-edge spectra must usually be carried to all orders of
multiple-scattering using a matrix inversion algorithm, which
is a real-space analog of the Korringa-Kohn-Rostoker �KKR�
band-structure approach that includes the core-hole potential.
We focus here on the calculation of ELNES, corresponding
to inelastic losses from the excitation of an electron from a
deep-core level, i.e., for core levels below about −50 eV,
into unoccupied states up to about 50 eV above the threshold
�or Fermi energy� in the system. Similar considerations also
apply to XAS and other deep-core-excitation spectra such as
nonresonant inelastic x-ray scattering �NRIXS�. Because
EELS is an absorption technique and the initial deep-core-
level states are sharply defined in energy, such core-loss sig-
nals predominantly reflect the electronic structure of excited,
unoccupied electron states. In particular, apart from a smooth
background cross-section factor and broadening, the shape of

an ionization edge roughly corresponds to the unoccupied
angular momentum projected density of electron states,
where the allowed states are fixed, e.g., by dipole selection
rules.

Within an effective independent particle approximation,
the excited “photoelectron states” must be calculated in the
presence of an appropriately screened core hole. In addition,
inelastic losses and core-hole lifetime give the photoelectron
a finite range, typically of order 5–20 Å for ELNES ener-
gies. The nature of the screening is still a matter of debate, as
various approximations for the core-hole potential are com-
monly used. These include for example, a fully screened po-
tential based on the final-state rule �FSR�, i.e., the final-state
Hamiltonian in the presence of the core hole; the Z+1 ap-
proximation; transition-state models; and linear random-
phase-approximation �RPA� screening as in the Bethe-
Salpeter equation �BSE�.7,8 In contrast to the case of valence
excitations,9,10 the screened core hole is well localized and
the range of the photoelectron is short in deep-core spec-
troscopies, and hence long-range core-hole effects are not
important. Nevertheless, the symmetry of the final-state one-
electron Hamiltonian is broken because of the core hole,
even for perfect crystals. Thus, the calculation of excitation
properties can be cast essentially as a localized, isolated im-
purity problem in an otherwise periodic system, with the net
signal averaged over all absorption sites. Consequently, we
must revisit the age-old dilemma of choosing between real-
space and reciprocal-space approaches for such calculations.
The choice depends on whether short- or long-range effects
dominate.

For calculations of EELS of aperiodic materials �e.g.,
amorphous materials, alloys, and defect systems�, a cluster
method such as the RSGF approach is often the method of
choice. This method has been implemented for relativistic
EELS calculations in the FEFF codes2 and is widely used for
simulating the spectra in such complex materials. Incorporat-
ing the core hole in the RSGF using the FSR �i.e., a fully
screened self-consistently determined core hole� or other
screened core-hole approximations is straightforward, pro-
vided that the cluster is large enough compared to the inelas-
tic mean-free path, which is of order 10 Å. For periodic
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materials, on the other hand, RSGF calculations can be less
appropriate for treating the ground states of a perfect crystal
in which the excitation takes place. The reason is that the
infinite crystal must be approximated by a finite cluster of
ordered atoms, the size of which an unphysical parameter
that must be converged to avoid finite-size artifacts.

Intuitively, a reciprocal-space formalism might seem to be
a better choice for calculating the EELS for a periodic crys-
tal. However, as mentioned above, in the presence of a core
hole, the excitation problem is effectively mapped onto an
impurity problem which breaks the symmetry of the crystal.
This can still be treated approximately by imposing periodic
boundary conditions �PBC�. However, PBC places images of
the “original” core hole into every unit cell so that it be-
comes necessary to use an artificially enlarged supercell to
suppress unphysical hole-hole interactions and related arti-
facts in the spectrum. Thus the supercell size is again an
unphysical parameter that must be converged. The resources
required for such PBC-FSR calculations rise dramatically,
typically as the cube of the dimension of the supercell in
typical calculations of electronic structure and spectra. A
number of codes based on the supercell approach currently
exist.11–13

The above considerations suggest that efficient calcula-
tions of EELS and XAS of crystals may need to blend both
views—real and reciprocal. Therefore we now propose a hy-
brid approach for the calculation of deep-core excitation
spectra of periodic systems in two steps: �i� calculate the
ground state of the perfect crystal in reciprocal space and �ii�
calculate the excitation spectra in real space with the addition
of an appropriately screened core hole. In �i� a conventional
unit cell is used while in �ii� the calculation is carried out in
real space without any particular unit cell. In this way, su-
percells are completely avoided. This hybrid approach is
similar to that introduced by Beeby14,15 for impurity KKR
calculations16,17 of the electronic properties of impurities
with real-valued Hamiltonians. However, our application to
core-hole EELS and XAS spectroscopy has a number of
novel features. Also the approach has the potential to im-
prove theoretical calculations of EELS and XAS in many
cases. With respect to band-structure codes, the description
of the excitation is improved, and with respect to real-space
codes such as FEFF, the description of ground state properties
of periodic solids is improved. Our approach also makes pos-
sible a straightforward comparison between our hybrid ap-
proach and conventional supercell band-structure ap-
proaches. This impurity Green’s function approach is now
implemented in an extension of the FEFF9 code.

The theory relevant to the reciprocal space extension of
FEFF is described in Sec. II while Secs. III and IV briefly
describe computational considerations and convergence is-
sues. Finally, some illustrative applications are given in Secs.
V and VI. In particular, we discuss supercell size conver-
gence and the equivalence of short-range and long-range re-
sults. We stress that, while this paper focuses on EELS, the
approach discussed here also applies to XAS, NRIXS, and
related deep-core spectroscopies, for which the underlying
physics is quite similar.

II. K-SPACE MULTIPLE SCATTERING FORMALISM

In the RSGF theory, the EELS or XAS spectrum is ob-
tained from local matrix elements of the Green’s function

���� � Im�
i

�i�d�G�E�d�i���E − Ef� , �1�

which is formally equivalent to Fermi’s golden rule. Here, i
is the initial core state of the system, E=Ei+� is the final-
state photoelectron energy, and d is the dipole operator for
EELS or XAS excitations. The expression for the nonrelativ-
istic EELS spectrum at small momentum transfer is similar
but with d replaced by eiqr, where q is the momentum trans-
fer. For relativistic beam energies, the transition operator d
contains additional relativistic corrections2 but the precise
form is not essential here. The Green’s function G of the
electron in the crystal is calculated from the free electron
propagator G0 and the scattering matrices tn of sites n in the
crystal. For excited states the free-electron propagator G0

= �E−h−��E�	−1 is the damped quasiparticle Green’s func-
tion as calculated in FEFF with a complex GW self-energy
��E� that replaces the exchange-correlation potential in
ground-state density-functional calculations, and h is the
Hartree potential of the final-state photoelectron, which is
calculated self-consistently in the presence of a screened core
hole.5 The full Green’s function G is calculated by summing
over all possible multiple scattering paths of the photoelec-
tron of energy E �first equality in Eq. �2� below	. For EX-
ELFS or EXAFS, that is for energy losses of more than about
50 eV beyond the edge threshold, when inelastic losses are
strong, this explicit multiple-scattering path expansion con-
verges well with increasing scattering path length. In order to
calculate the absorption spectrum near-edge structure, i.e.,
ELNES or XANES within 50 eV of threshold, the full mul-
tiple scattering �FMS� approach in real space has been de-
veloped. For FMS, one limits the number of atoms to a small
cluster around the absorber �typically 100–300 atoms, de-
pending on the inelastic mean-free path� but sums implicitly
over all scattering paths within this cluster using a matrix
inversion equivalent to the KKR multiple-scattering
equations4

G = G0 + G0tG0 + G0tG0tG0 + ¯

= G0�1 − tG0	−1 = �1 − G0t	−1G0. �2�

For calculation purposes, the quantities in Eq. �2� are repre-
sented as matrices in a site and angular momentum basis
�n ,L�, where n denotes a site index and L= l ,m the angular
momentum indices. When calculating Eq. �2� in real space
for a crystal, one needs to truncate the matrices at some
maximum radius in real space. Sometimes the convergence
of the spectrum with respect to this finite cluster size can be
computationally demanding. For example, the diamond K
edge of C �diamond� requires at least 600 atoms in a FMS
calculation due to the long mean-free path in the near-edge
region. In contrast, the periodicity of crystals makes it more
efficient and elegant to carry out the calculation in k space.
This way, it is possible to treat the full crystal without intro-
ducing a cut-off radius. This was first described in detail by
Beeby14 and we proceed analogously.
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The k-space KKR structure constants K are defined as the
lattice Fourier transforms of the real-space free propagator
matrix elements G0

K���k� = lim
N→�

N−1 �
i�j

lattice vectors

N

eik·rijGi�,j�
0 ;

Gi�,j�
0 = G0��ri + a�� − �rj + a��	 . �3�

They are discussed in more detail in the appendix. Notation-
ally, we index atoms in real space by n ,n� , . . . while the
same atoms are specified in reciprocal space using a lattice
vector i , j , . . . and an index � ,� , . . . specifying their positions
within the unit cell. Thus Gn,n�
Gi�,j�. The inverse transfor-
mation is

�BZ
−1�

BZ
dkK���k�e−ik.rij = Gi�,j�

0 . �4�

We now calculate the electronic structure of the ground-state
crystal, that is, with no core hole present yet. Introducing the
k-space KKR structure constants in Eq. �2� leads to

Gnn� = �
BZ

dke−ik.rii���1 − KT�−1K	���; T��� = t�	���,

�5�

where K and T are matrices in a site and angular momentum
basis, t�=exp�i	l�sin 	l with the sites now corresponding to
the atoms of the unit cell of the crystal �a finite number�.
Equation �5� yields the real-space Green’s function, from
which one can obtain the electronic structure and excitation
spectra without any finite cluster approximations. Also, the
poles of the integrand of Eq. �5� yield the band structure.
This is formally equivalent to KKR theory,16,17 where the
band structure is obtained from the pole singularities of the
scattering path operator ��k�


�k� = �K�k� − t−1	−1. �6�

If the unit cell contains only one atom, the indices � can be
dropped in Eqs. �3� and �5�, thereby simplifying the equa-
tions to

K�k� = lim
N→�

�
j�1

lattice vectors

N

eik.r1jG1,j
0 , �7�

Gnn� = �
BZ

dke−ik.rii��1 − K�k�t	−1K�k� . �8�

These are equivalent to the results of Schaich18 and Beeby15

for monatomic crystals.
It is now straightforward to add a well-localized core hole

to the above formalism, assuming that only the potential at a
single site is changed. This is done entirely in real space,
avoiding the problems with PBC and supercells discussed in
the introduction. The impurity KKR approach treats impuri-
ties in precisely the same way.14 First, we start with the so-
lution Gp for the perfect �ground-state� crystal with scatter-

ing matrix Tp, calculated using Eq. �5�. The imperfect crystal
with a core hole has the same KKR structure constants as the
perfect system but with a scattering matrix Ti that differs
from Tp only in one site block corresponding to the core-hole
atom. Its Green’s function Gi is now given by simple matrix
algebra

Gi = �1 − G0Tp − G0T�−1G0 = �1 − GpT�−1Gp, T 
 Ti − Tp.

�9�

When T is nonzero in one block only, the Green’s function
between sites n and n� is given by

Gnn� = �1 − 	nc�Gnn�
p + �	nc1 + �1 − 	nc�Gnc

p tc
i 	

��1 − Gcc
p tc

i �−1Gcn�
p , �10�

where c is the index of the core hole. In particular, we need
for the EELS spectrum

Gcc = �1 − Gcc
p tc

i �−1Gcc
p . �11�

III. METHODS OF CALCULATION

The above approach for calculating EELS has been imple-
mented in the FEFF9 code. With the addition of the reciprocal
space approach, the code now offers three formally equiva-
lent ways of calculating the Green’s function

G = G0 + G0tG0 + G0tG0tG0 + ¯ , �12�

G = G0�1 − tG0	−1, �13�

G = �
BZ

dkG0�k��1 − tG0�k�	−1. �14�

The XAS and EELS are then calculated using Eq. �1� with G
from one of Eqs. �12�–�14�. The local density of states
�DOS� can also be obtained from the imaginary part of G�E�,
i.e., the lDOS is �l�E�=−�1 /�Im Gl�E�. Equation �12� is the
multiple-scattering path expansion �MSPE� and is appropri-
ate for calculating EXELFS and EXAFS many hundreds of
electron volts above threshold. Equation �13�, the FMS in
real space,4 is appropriate for ELNES and XANES of aperi-
odic systems. Equation �14�, the k-space approach of Sec. II,
is appropriate for ELNES and XANES of crystals. In all
three cases, the core hole is treated in real space. In the PE
and FMS approaches, it amounts to changing the t matrix on
only one atom �the absorbing atom� in the real-space cluster
of the calculation. In the k-space approach, the impurity per-
turbation is added in real space after evaluating Eq. �14�

Gch = G�1 − �tchG	−1. �15�

Considering computational efficiency, we note that all quan-
tities in Eqs. �12�–�15� are matrices in a site and angular
momentum basis �n ,L�. Similar angular momentum cutoffs
are needed in all cases. The computational cost of the calcu-
lation is dominated by the matrix inversions in Eq. �13� and
�14�. Real-space FMS requires one inversion of a large ma-
trix of dimension given by the number of atoms in the cluster
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times the size of the angular momentum basis �lmax+1�2 for
real space FMS, where lmax is the maximum angular momen-
tum. The k-space calculations involve inversion of a small
matrix of dimension given by the number of atoms in the
unit cell for each k vector used to sample the Brillouin zone
�BZ� integral. As the unit cell of a crystal becomes larger,
fewer k points are typically needed but the calculations be-
come slower with increasing unit cell size. Since one typi-
cally needs a cluster of 300 atoms for real-space calculations,
the reciprocal space treatment is especially advantageous for
crystals with small unit cells containing only a few atoms.
For EXELFS, at energy losses more than 50–70 eV above
threshold, the angular momentum cutoffs required for con-
verged results gradually increase. At the same time, the
MSPE formalism becomes increasingly more accurate in
representing the spectrum. It is therefore advantageous to use
the real-space MSPE calculations for the extended fine struc-
ture even for crystals. Thus reciprocal space calculations are
now straightforward to use with FEFF9.19

Typically, the element of which one calculates a particular
edge occurs many times in the crystal. As the electron beam
causes many excitations during the experiment, the contribu-
tions of all occurrences of the element must be summed. It is
appropriate to do the sum incoherently. The excitations can
be treated as independent since core loss EELS excitations
are localized due to the spatial confinement of the initial core
state of the sample and are sufficiently rare that they are
unlikely to influence each other. Thus, it is sufficient to cal-
culate the spectra of each atom independently and simply
take the average. In the case of crystals, one sums the spectra
of each atom in the unit cell. For example, graphite �highly
oriented pyrolytic graphite �HOPG�	 contains four carbon
atoms, two of which are crystallographically inequivalent
�i.e., have a different environment and therefore different lo-
cal electronic structure�. The other two differ from the first
two only by a symmetry element of the crystal point group.
Now if one wants to calculate an orientation-averaged C K
spectrum �to simulate a polycrystalline sample�, it is suffi-
cient to calculate the spectrum for the two inequivalent po-
sitions, multiply each spectrum by the number of atoms it
represents �two, in this case�, and add them. If one wants to
calculate an orientation-resolved spectrum, it is necessary to
add four individual spectra, as even the crystallographically
equivalent atoms are oriented differently with respect to the
beam and contribute differently. Each inequivalent site gen-
erally requires a new core-hole calculation whereas equiva-
lent sites can be obtained by appropriately rotating the local
electronic structure �or, equivalently, the electron beam�.
Such summations are not currently automated in FEFF9 but
are easily done by hand. Note that, although FEFF9 also has
an option to calculate configurational averages for the fine
structure, we recommend using the technique described here
instead, as it will generally be much more accurate for the
near edge.

IV. CONVERGENCE OF K-SPACE CALCULATIONS

In k-space calculations of the propagator G�E� in Eq.
�14�, the Green’s function is obtained by numerically evalu-

ating an integral over a Brillouin zone. FEFF9 uses the con-
ventional tetrahedron integration approach of Blöchl et al.20

The number of k vectors in the integration grid is a key
convergence parameter in the calculation. It is difficult to
give a general prescription for the number of k points to use
since the required number for convergence depends on the
size of the Brillouin zone �which is inversely proportional to
the size of the real-space unit cell�, the complexity of the
band structure and the desired accuracy. In any case, it is not
necessary to converge fine details of the electronic structure
when simulating a spectrum with large lifetime broadening.
However, we find that in FEFF k meshes on the order of 103

points are typically sufficient to obtain converged results for
crystals with small unit cells.

We illustrate in Fig. 1 the impurity Green’s function ap-
proach for the C K-edge ELNES of diamond as calculated
with FEFF9 using Eq. �14� in Eq. �1�. Fair convergence is
achieved for 1000 k points and excellent convergence for
5000 k points. No substantial change is observed when in-
creasing to 25 000 k points.

As a second example, the total ground-state DOS of
HOPG graphite in the absence of a core hole ��E�=�l�l�E�
is shown in Fig. 2. Since the ground state DOS lacks final-
state broadening, it is much sharper than the ELNES and
convergence is slower with 5000 k points needed for a con-
verged result. In particular, the zero width band gap at the
Fermi level �EF=−13.8 eV in Fig. 2� takes 3000 k points to
converge well.

V. CORE-LEVEL EELS WITHOUT A SUPERCELL

Calculations of core-level spectra are typically carried out
with a self-consistently screened static core hole, as in the
FSR. Such FSR calculations often yield results that are sig-
nificantly better than ground-state calculations. More sophis-
ticated calculations require the BSE.8 For deep-core spectra,

FIG. 1. �Color online� Convergence of the C K-edge ELNES of
diamond, calculated using FEFF9 with the impurity Green’s function
approach, with varying numbers of k points used for Brillouin-zone
integration: 100 �black, solid line�, 1000 �red, long dashes�, and
5000 �green, short dashes�. Above 5000 k points, the spectrum is
fully converged.
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the use of a static RPA screened core hole provides a good
approximation to the BSE.17 However, while the FSR breaks
the symmetry of a crystal, calculations of XAS and ELNES
are often done using band-structure codes with PBC. This
necessitates the use of a supercell, leading to convergence
issues with respect to the size of the supercell. The use of
PBC replicates core hole atoms throughout the crystal at the
rate of one impurity per supercell so supercell size conver-
gence requires that these be far enough apart to mimic a
crystal in which there is only one excitation. All interactions
between neighboring core-hole atoms are unphysical and
must be suppressed by making the supercell larger. In prin-
ciple, this requires a convergence study for each material
under consideration. There are many successful examples of
convergence studies in literature.11,21,22 However, in some
cases convergence is difficult or impractical to reach with
current computational tools. A notorious case is the C K edge
of diamond.13 Moreover, supercell convergence studies can
require significant effort and computer time.

Below we illustrate our “core hole without the supercell”
approach for the N K edge of wurtzite �or hexagonal� GaN.
Here references to reciprocal-space FEFF9 calculations al-
ways mean the ground state Green’s function is calculated in
reciprocal space, and the core hole added in real space, as
outlined in Sec. II. Measurements were taken from Moreno
et al.23 In Fig. 3�a� we compare experimental data measured
in the �100	 orientation to different FEFF9 calculations. Real-
space calculations are already quite successful for simula-
tions of this particular edge but it is clear that our treatment
using the reciprocal-space ground state and a real-space core
hole yields even better agreement with experiment, improv-
ing, in particular, the description of the feature at 405-eV loss
and the amplitude of the edge onset at 401-eV loss. We also
note that the full reciprocal space calculation gives better
results than a hybrid calculation in which the potentials and

scattering t matrices were calculated in real space and the
FMS calculation was then carried out in reciprocal space.
Figure 3�b� shows the same edge measured and calculated in
001 orientation and the agreement is still very good. Essen-
tially the same conclusions apply. We believe that remaining
discrepancies between experiment and calculation can partly
be attributed to the lack of full potential corrections in the
scattering potentials.

Figure 4 shows a comparison of our reciprocal-space
FEFF9 calculations to the supercell approach, calculated using
the WIEN2K and TELNES2 programs.11,24 Although the agree-
ment between the WIEN2K calculation and the experimental
spectrum is good by common standards, the onset is not
described correctly, and it is unclear how well the feature at
405 eV is reproduced. It is of particular interest to study the
edge onset. It can be seen that as the supercell grows in size,
intensity slowly transfers to the onset, bringing it closer to

FIG. 2. �Color online� Total density of states of graphite ��E�,
calculated using the k-space approach as implemented in FEFF9, and
its convergence with the number of k points used for BZ integra-
tion. We show calculations using 1000 �black, solid line�, 3000 �red,
long dashes�, and 5000 �green, short dashes� k points in the full
Brillouin zone. The Fermi-level EF is at −13.8 eV relative to the
vacuum level.

(b)

(a)

FIG. 3. �Color online� �a� N K-edge ELNES of GaN at 300-keV
beam energy and collection angle 0.3 mrad and convergence angle
0.2 mrad, measured in �100	 orientation. We compare the experi-
ment �red+symbols; Moreno et al. �Ref. 23�	 to different FEFF cal-
culations: real-space calculation �green, short dashes�, reciprocal
space calculation �black, solid line�, and a hybrid where the poten-
tials were calculated in real space but the FMS calculation was done
in reciprocal space �blue, long dashes�. Spectra are aligned by hand
and normalized at the second �403 eV� peak; and �b� for the �100	
orientation and the collection angle is 0.4 mrad.
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the correct relative amplitude �if not energy� for the largest
supercell we studied. The trend continues for even larger
supercells �4�4�3�; this is not included in the figure be-
cause basis set limitations made it difficult to calculate the
spectrum reliably beyond the edge threshold. The FEFF9 cal-
culation can be seen as the convergence point of a series of
calculations of increasing supercell size.

Of course, one should not expect that the WIEN2K and
FEFF9 calculations agree exactly with each other since the
physics underlying each method is not identical. For ex-
ample, FEFF9 uses a complex self-energy and spherical
muffin-tin potentials while WIEN2K uses a real exchange-
correlation potential and full nonspherical potentials. Finally,
regarding computational efficiency, the FEFF9 spectrum was
produced in about one CPU hour while the WIEN2K conver-
gence study took several days on a computer cluster, with
individual calculations ranging from about 1 h to 1 day with
5–12 CPU’s.

While the reader may be interested in the relative speed of
real and reciprocal space calculations, we are hesitant to
make any sort of quantitative evaluation. For all of the ex-
amples shown in this paper, Eq. �14� presented a significant
gain in efficiency over Eq. �13�. However, these gains de-
pends on the system, as systems with more complex unit
cells will lead to slower k-space calculations, and real-space
calculations scale with the inelastic mean-free path, which
determines the cluster size needed for convergence. Simi-
larly, it is very difficult to give general expectations for the
time gains of reciprocal space FEFF compared to supercell
calculations with band-structure codes, as there is no general
guideline for how large a supercell needs to be. However,
since the cost of a reciprocal space core hole FEFF calculation
is little more than the cost of a ground-state calculation, we
expect it to perform quite competitively.

VI. VALIDATION OF THE FINITE CLUSTER
APPROXIMATION

The formal equivalence of the reciprocal space �long-
range order� formalism and the real-space �short-range order�
formalism has been established, e.g., by Schaich.18 Formally,
as the real-space calculations of electronic structure are taken
to longer and longer range, they converge to the reciprocal
space results. Since our approach in FEFF9 can calculate both
real space and reciprocal space results �short and long range�
within the same code, we can verify this equivalence directly
using the same theoretical framework, approximations, and
conventions for both ranges.

We present FEFF9 k-space XANES calculations of the
Cu K edge in Fig. 5�a�, thereby also illustrating the useful-
ness of our approach for XAS calculations. The agreement
with experiment is excellent. This calculation can be com-
pared directly to the real-space results presented elsewhere.6

We show the convergence in reciprocal space as a function
of the number of k vectors used for the BZ integration in Fig.
5�b�, and in Fig. 5�c� the convergence in real space as a
function of the number of atoms used for the finite-cluster
FMS inversion. In Figs. 5�b� and 5�c� we have subtracted the
smooth atomic background and show only the so-called fine
structure, which is the quantity that requires convergence.
One clearly sees that both calculations converge to the same
result. Similar results were seen in the calculation of other
ionization edges although typical k meshes are of the order
�103 rather than �102.

The remaining question of efficiency of the RSGF ap-
proach for crystals thus depends on the “near sightedness” of
matter.25 The experience of the RSGF community shows that
real-space calculations of the ground-state electronic struc-
ture of crystals typically converge quickly with cluster size,
typically with about 50–100 atoms in the self-consistent cal-
culations. In contrast, the convergence of the excited state
electronic structure is set by the typical range of the mean-
free path, which is typically between 5 and 20 Å in most
materials. Thus an XAS or EELS spectrum is often fairly
well converged for a cluster of about 150–300 atoms.4,5,26

However, there is always the possibility of real-space finite
cluster size artifacts in the calculation, which can be cumber-
some to converge. For example, the diamond C K edge is
very difficult to converge with respect to cluster size due to
the much longer mean free paths for low Z atoms and shal-
low core holes. Such calculations can also become unreason-
ably inefficient, e.g., taking hours to calculate the density of
states of diamond, which a band-structure code could do in
minutes. While the focus of this paper is FSR calculation of
EELS without the supercell, another important aim of our
FEFF9 code is to avoid these inadequacies of the finite cluster
real-space method for clusters.

VII. CONCLUSIONS

We have introduced a reciprocal-space extension to the
real-space Green’s function code FEFF9. This hybrid ap-
proach allows one to treat the ground state of a periodic
system in reciprocal space and then add an appropriately
screened-core hole in real space. This way we perform fast

FIG. 4. �Color online� N K edge of GaN in the same experimen-
tal conditions as Fig. 3. The convergence of WIEN2K supercell size is
studied and compared to experiment �red+symbols� and a FEFF9

calculation �black, solid line�. WIEN2K spectra are shown for super-
cells of size 1�1�1 �pink, short dash—dot�, 2�2�1 �gray, long
dash—dot�, 2�2�2 �blue, long dashes�, and 3�3�2 �green,
short dashes�, in units of the regular unit cell. Spectra were aligned
by hand and normalized to the second peak �403 eV�.

K. JORISSEN AND J. J. REHR PHYSICAL REVIEW B 81, 245124 �2010�

245124-6



calculations of ELNES and XANES for deep-core spectra
without either making a finite cluster approximation or using
a supercell. This sidesteps both supercell artifacts and super-
cell size convergence issues entirely. We have verified the
validity of this approach by presenting excellent results for
the N K edge of GaN and showing how they can be seen as
the convergence point of DFT band-structure calculations of
increasing supercell size. Additionally, we have demon-
strated the equivalence of short-range and long-range meth-
ods by comparing real-space to reciprocal-space calculations
of the Cu K edge using FEFF9 and showed that they converge
to the same theoretical spectrum.
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APPENDIX: CALCULATION OF THE KKR STRUCTURE
FACTORS

The most efficient scheme for the calculation of the KKR
structure factors defined in Eq. �3� is the Ewald summation
technique.27 It is also described in recent and more accessible
papers.28,29 However, these sources are limited to monatomic
lattices. We here present the KKR structure factors of so-
called complex crystals containing an arbitrary number of
atoms in the unit cell.

We recall the definition of the structure factor

K���k� ª G��
0 �k� ª lim

N→�

1

N �
i�j

lattice vectors

N

eik.rijGi�,j�
0 ,

�A1�

where G0 is the free propagator

Gi�,j�
0 = G0��ri + a�� − �rj + a��	 . �A2�

And the inverse relationship is

�BZ
−1�

BZ
dkK���k�e−ik.rij = N−1�BZ

−1 �
l�p

Gl�,p�
0 �

BZ
dkeik.�rlp−rij�

= Gi�,j�
0 . �A3�

Brute force calculation of K�� by use of Eq. �A1� is very
inefficient and can lead to convergence problems. For our
purposes, the structure factor also needs to be expressed in
an angular momentum basis L ,L��L= l ,m�. We define a
dummy function

(b)

(a)

(c)

FIG. 5. �Color online� �a� K-space FEFF9 calculation of the Cu K
edge �golden, solid line� compared to experimental XANES data
�red+symbols�. The calculation used 400 k points to sample the full
Brillouin zone. Several newer FEFF9 features were used, including
the MANYPOLE self-energy. �b� Long-range calculations: conver-
gence of the Cu K edge as a function of the number of k points used
to sample the full brillouin zone: 50 �pink, short dashes�, 100 �blue,
medium dashes�, 200 �green, long dashes�, and 2000 �red, solid
line�. Convergence is essentially reached at 200 k points. The quan-
tity shown is the fine structure, i.e., the spectrum minus the smooth
atomic background. �c� Short-range calculations: similarly, conver-
gence of the fine structure in terms of the number of atoms in a
real-space calculation: 50 �pink, short dashes�, 100 �blue, medium
dashes�, 200 �green, long dashes�, and 400 �red, solid line�. Con-
vergence is nearly reached at 400 atoms. This plot also shows the
converged k-space result for comparison �cyan, long dash—dot�.
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G���R� = − �4�−1�
s

� eip�R−rs−a���

R − rs − a��

eik.rs, �A4�

where the prime on the summation symbol means that the
sum runs over all lattice vectors excluding the term rs=0.
The Fourier transform of G�� is

�
BZ

G���R�e−ik.rsdk = G0�R − �rs + a���	 if rs � lattice;

= 0 otherwise, �A5�

where G0 is the real-space free propagator �notice that this
definition is not the Rehr-Albers normalization�. The dummy
function satisfies

K�� = lim
R→0

G���R� . �A6�

Hence, an expansion of the form

G���R = r − r�� = �
L

�
L�

�il−l�B�L�L�jl�pr�jl��pr��

+ p	LL�jl�pr�nl�pr��	YL�r�YL��r�� �A7�

will give us K�L�L�. However, as the Green’s function is a
function of R, it can also be expanded as

G���R� = − �4�−1cos�pR�
R

+ �
L

ilD��Ljl�pR�YL�R� ,

�A8�

which is much simpler. The B coefficients can be recovered
as

B�L�L� = 4�
�

D���CLL�
� , �A9�

where C are Wigner 3j symbols. The divergent terms in Eqs.
�A7� and �A8� are only needed for r and r� in the same cell.
FEFF9 has overlapping muffin-tin spheres so this is important
even for R=0. Finally, the spherical harmonics in Eqs. �A7�
and �A8� are real.

Through the usual Ewald technique manipulations, the
dummy function is written as

G���R� = − �23/2�−1��
s

�
eik.rs�

��/2

+�

e−�R − rs − a���2�2+p2/4�2
d�� − 
−1�

n

ei�Kn+k�.�R−a��� e−�Kn + k�2−p2/�

�Kn + k�2 − p2 − �
0

��/2
e−R2�2+p2/4�2

d�� .

�A10�

Then, projecting onto spherical harmonics and taking the limit R→0 �as D�� lm ought to be independent of R� gives the
coefficients of Eq. �A8�

D��lm = − 4
−1�
n

e−�kn
2−p2�/�

�kn
2 − p2�

e−ikn.a�� kn

p
�l

Ylm
� �kn� + ��−1	l0	m0�

0

��/2
ep2/4�2

d� − 2−1/2�
s

�
eik.rsYlm

� �− i�rs + a���	

�− 2i�rs + a���
p

�l�
��/2

+�

d�e−�rs + a���2�+p2/4�2
�2l. �A11�

Equation �A11� is the main result of this appendix. It can be split in three parts

D��lm = Dlm
�1� + Dlm

�3� + Dlm
�2�, �A12�

where Greek indices were suppressed on the right-hand side. The latter two can be reworked into a more numerically
convenient form.

Dlm
�3� = 	l0	m0

− 1

2
���

l=0

+� E

�
�l 1

l!�2l − 1�
, �A13�

Dlm
�2� = − 2−1/2�

s

�
eik.rsYlm

� �− i�rs + a���	− 2i�rs + a���
p

�l�
��/2

+�

d�e−�rs + a���2�2+p2/4�2
�2l

= −� �

4
�

s

�
eik.rsYlm

� �− i�rs + a���	− i��rs + a���
2p

�l

e−�/4�rs + a���2�
n
 p2

�
�n 1

n!
fl − n +

1

2
,
�

4
�rs + a���2� . �A14�
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